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Abstract

Under pitch excitation, the sloshing of liquid in circular cylindrical tank includes planar motion, rotary motion and

rotary motion inside planar motion. The boundaries between stable motion and unstable motion depend on the radius of

the tank, the liquid height, the gravitational intension, the surface tensor and the sloshing damping. In this article, the

differential equations of nonlinear sloshing are built first. And by variational principle, the Lagrange function of liquid

pressure is constructed in volume integration form. Then the velocity potential function is expanded in series by wave

height function at the free surface. The nonlinear equations with kinematics and dynamics free surface boundary

conditions through variation are derived. At last, these equations are solved by multiple-scales method. The influence of

Bond number on the global stable response of nonlinear liquid sloshing in circular cylinder tank is analyzed in detail. The

result indicates that the system’s amplitude–frequency response changes from a ‘soft-spring’ to a ‘hard-spring’ in the planar

motion with the decreasing of the Bond number, while it changes from a ‘hard-spring’ to a ‘soft-spring’ in the rotary

motion. At the same time, jump, lag and other nonlinear phenomena of liquid sloshing are discovered.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of liquid sloshing in moving or stationary containers remains of great concern to aerospace,
civil, and nuclear engineers, physicists, designers of road tankers and ship tankers, and mathematicians [1].
Depending on the type of disturbance, container shape, sloshing damp, baffle and setting position, the free
liquid surface can experience different types of motion including simple planar, nonplanar, rotational,
irregular beating, symmetric, asymmetric, quasi-periodic and chaotic. Up to now, it has received considerable
attention over the past few years by numerical methods, such as MAC method, VOF method, BRM, FEM
and BEM, and analytical methods. Although numerical methods, which can avoid deficiency caused by the
experiment, such as lack of time, external applied loads, initial conditions and measuring conditions, are
widely used in study of the nonlinear sloshing of liquid, analytical methods are equivalently important to
discover and explain all kinds of nonlinear phenomena of liquid sloshing. And the key point of studying
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sloshing of liquid through analytical method is the treatment of the nonlinear terms of the discrete differential
or variational equations, in order to describe violent sloshing [2].

Many studies are done on nonlinear sloshing in a circle cylindrical tank under normal gravity. Hutton [3]
took the lead in using perturbation method to study liquid sloshing under lateral excitation, and the results
were verified by experiment. Gou et al. [4] discovered the phenomena of synchronous Hopf bifurcation by the
Galerkin method. Komatsu [5] used multiscale method to study nonlinear sloshing in tank with arbitrary
geometries under lateral excitation. The results coincide well with the experiment results. Yin et al. [6]
generalized this method to study nonlinearity under pitching. Under low gravity field, the surface tension is
dominant and the liquid may be oriented randomly within the tank depending essentially upon the wetting
characteristics of the tank wall. Due to the complexity of study and the validity of method, the study on
nonlinear sloshing develops slowly. Experiment is widely used to obtain the parameters of sloshing, and then
the parameters are used in the design of control system. Satterlee and Reynolds (1964), Dodge and Garza
(1967), Bauer and Siekmann (1971), Peterson et al. (1989), Bauer and Siekmann (1971), Peterson et al. (1989)
studied linear and nonlinear sloshing by analytical method in the circle cylindrical tank, a Yeh (1967), Concus
et al. (1969), Chu (1970), Dodge and Garza (1970), Dodge et al. (1991), Hung and Lee (1992), Utsumi (1998,
2000) studied sloshing in an axisymmetrical container [7]. Utsumi also studied the sloshing in teardrop tanks
[8]. The shape of liquid quiet surface, natural frequency and sloshing modal, forced response, sloshing damp,
influence of liquid to tank wall, establishment of equivalent models, extraction of sloshing parameter and large
amplitude nonlinear sloshing within the context of low gravity are all studied by former researchers [9].
Peterson et al. [10] studied nonlinear sloshing and nonlinear fluid sloshing coupled to the dynamics of a
spacecraft. Van Schoor and Crawley [11] studied it by experiment, and the results were tested on Middeck’s. In
addition, Waterhouse [12] also particularly discussed the problem that soft-spring and hard-spring varying
with the depth of liquid.

In this paper, volume integration of pressure formed Lagrange function of liquid sloshing in low gravity is
built based on variational principle and the velocity potential function is expanded in series by wave height
function at the free surface. Then the boundary conditions of kinematics and dynamics at the free surface is
obtained. Finally, through analytical study by multiple scales method, variation of amplitude frequency
response characteristics of the system with Bond, jump, lag and other nonlinear phenomena of liquid sloshing
are investigated.

2. A variational principle for liquid sloshing under low gravity

2.1. Governing equations

In the present context, the container is forced to pitch and(or) yaw with an angular velocity vector OðtÞ.
Fig. 1 shows a 3-D cylindrical tank in motion. A Cartesian coordinate system O–XYZ is an inertial system, Z-
axis is directed upward. A coordinate system o–xyz is fixed to the container in such a manner that x-axis is
parallel to the undisturbed free surface and the z-axis is in coincidence with the center line of the tank. Here,
f ðrÞ þ e� C0 is the free surface of the liquid, where f ðrÞ is the quiet free surface, e is the distance between the
undisturbed free surface and the x-axis, which is taken positive when the free surface is above the x-axis. C0 is
the distance from the lowest point at the free surface under low gravity to the free surface under normal
gravity. h is the depth of liquid. The origin o is taken as the center of rotation. axðtÞ and ayðtÞ is the angular of
inclination of container at the time t.

It is assumed that the liquid is inviscid and incompressible, and the flow is irrotational. The liquid sloshing
low gravity undergoing pitching and(or) yaw motion can be reduced to the following nonlinear, initial
boundary value problem:

r2F ¼ 0 in V , (1)

rF �~n ¼ ðO
*
� r

*
Þ �~n on Sw, (2)
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qZ
qt
¼ ðrF� O

*
� r

*
Þ � rF on Sf , (3)

2H

B0
�

qF
qt
�

1

2
jrFj2 �~rþ ðO

*
� r

*
Þ � rF ¼ 0 on Sf , (4)

qZ
qr
¼ C1 sgn

qZ
qt

� �
at r ¼ a; z ¼ f ðaÞ, (5)

where V is the liquid region, F ¼ z� ðZþ e� C0Þ is the equation of the free surface, Z is the height of the free
surface measured from the undisturbed free surface,~r is the position vector of the liquid particle, ~n is the unit
normal drawn outwardly on the wetted wall Sw, C1 is constant of contact angle hysteresis, B0 is Bond number.
2H is the mean surface curvature:

2H ¼
1

r

q
qr

rZr

ð1þ ðf rÞ
2
Þ
3=2

( )
þ

1

r2
q
qy

Zy
ð1þ ðf rÞ

2
Þ
1=2

( )
. (6)

2.2. A variational principle

By generalizing Luke’s [13] stationary pressure principles, which are also applicable in the case of liquid
forced responses, the Lagrange functions can be expressed in the form of volume integral of the liquid
pressure. Then, by using the variational principles we can get

dJ ¼ d
Z t2

t1

LðF; ZÞdt, (7)

where

LðF; ZÞ ¼ �
ZZ

V

Z
qF
qt
þ

1

2
ðrFÞ2 �

2H

B0
þ~r� ðO

*
� r

*
Þ � rF

� �
dV , (8)

where Fðr; y; z; tÞ and Zðr; y; tÞ are allowed to vary with time, but are subject to the restriction dF ¼ 0, dZ ¼ 0 at
t1 and t2.
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Fig. 1. A container under pitching and yawing excitation.
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According to the usual procedure in the calculus of variations, Eq. (7) becomes

dJ ¼ �

Z t2

t1

ZZ
qF
qt
þ

1

2
ðrF� ~O�~rÞ2 �

1

2
ð~O�~rÞ2 �~r�

2sH

r

� �
dZ

� �
z¼Zþe

dS0

(

þ

ZZ Z ðZþeÞ

�ðh�eÞ

½dFt þ ðrF� ~O�~rÞ � rdF�dz

� �
dS0

�
dt ¼ 0, ð9Þ

where S0 is the cross-section of the container. Integrating the term dFt in Eq. (9) with respect to z, and
applying Green’s first theorem, Eq. (7) can be rewritten as

dJ ¼ �

Z t2

t1

ZZ
dZ �

qF
qt
þ

1

2
ðrF� ~O�~rÞ2 �

1

2
ð~O�~rÞ2 �~r�

2sH

r

� �� �
z¼Zþe

dS0

(

�

ZZZ
dFr2FdV þ

ZZ
S0

dF � �
qZ
qt
þ ðrF� O

*
�~rÞ � rF

� �� �
z¼Zþe

dS0

þ

ZZ
Sw

½dF � ½rF �~n� ðO
*
�~rÞ �~n��dS

�
dt ¼ 0. ð10Þ

Considering that dZ, dF may be given arbitrary independent values, we can also obtain Eqs. (1)–(4), but we
should note that the variational principle does not include the contact line condition which requires that the
contact angle between liquid surface and container wall remains constant during sloshing. Subsequently we
will study the sloshing of liquid in a 3-D cylindrical, rigid open tank without baffles, which is forced to
nonlinear harmonic pitching oscillation.

3. Nonlinear sloshing of liquid

The tank model and coordinate system are shown in Fig. 1. The tank is only forced to pitch around the
y-axis with angular velocity O. The motion of the tank is given as

a ¼ y0 sinoet, (11)

where a is the angular of inclination of the tank, y0 is the peak amplitude of the tank pitching motion
excitation and oe is an angular velocity.

Integrating qFt=qt in Eq. (10) with respect to z, and expanding terms by the power series of Z, and retaining
the term up to the fourth order, Eq. (10) becomes

L ¼

ZZ
S0

Fþ Z
_
�Fz þ Fzz �

Z
_ 2

2

 !
Zt �

1

2
F � Fz �

ðrFÞ2

2
� Z
_

"

�
Z
_ 2

2
rF � r

qF
qz

� �
� FrO cos yþ Z

_
�½ðO
*
�~rÞ � rF�

þ
Z
_ 2

2

q½ðO
*
�~rÞ � rF�
qz

24 35þ r sin a cos y Z
_
� cos a �

Z
_ 2

2
� cos a � e Z

_

�
1

B0
� ð2HÞ �

1

B0

qð2HÞ

qz
bZ#dS �

1

2

Z
½FOz cos y�dSjr¼a

�
1

2

Z
ðFOr cos yÞdSjz¼e�h, ð12Þ

where Ẑ ¼ Zþ f ðrÞ � C0. Thus it can be seen that the integrals over the free surface Sf have been transformed
into those over the liquid quiet surface S0.
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The solution of F and Z is searched by the summation form of the eigenmodes as follows

Fðr; y; z; tÞ ¼ F0Oþ
X

n

anfnðr; y; zÞ; Zðr; y; tÞ ¼
X

n

bnfnðr; y; 0Þ, (13)

where F0O takes care of the inhomogeneous body boundary condition. We found F0 when solving the linear
equations (1)–(4) and it is

F0 ¼ a2 z

a
�

r

a
� 2

X1
n¼1

ch½k1nðzþ hÞ� � 2ch½k1nz�

x1nðx
2
1n � 1Þshðk1nhÞ

 !
�

J1ðk1nrÞ

J1ðx1nÞ

" #
cos y, (14)

where Jn is the Bessel function of the first kind.
Substituting Eq. (13) into Eq. (12) and carrying out integrations, L can be expressed finally as

L ¼ T�=B0 þ sin a � tþ V�=B� 0:5 cos a �W � þ
X

i

ðO _bidi þ aibi
_bi � 0:5Oliaidi

� 0:5lia
2
i bi � Oaiti þ sin a � biti � 0:5 cos a � b2

i bi þ biTi=B0 þ 0:5aizi

þ 0:5aiBi þ OaiW i � OaiV i � OliaiUi � cos a � biPi þ 0:5OaiQi

þ 0:5OliaiIQi � 0:5OaiOi � 0:5OliaiIOi � 0:5OkiaiIPiÞ

þ
X

i;j

ððliX ij � 0:5OkiY
�
ijÞai

_bj þ ðOE�ij � OF�ij � OliE
�
ij � 0:5Pij � 0:5Oij

� OIW ij þ OliIV ij � OliIUij � OIPij � OkiIOijÞaibj � ð0:5liIRij

þ 0:5liljX ij þ 0:5liISij þ 0:5likjY
�
ijÞaiajÞ þ

X
i;j;k

ððliak
ij þ kiITijkÞaibj

_bk

� 0:5ðbk
ij þ gk

ij þ liSijk þ liljak
ij þ likjITijkÞaiajbk þ 0:5OðH�ijk þ liI

�
ijk

� J�ijk � liK
�
ijk � kiL

�
ijk � liRijkÞaibjbk þ

X
i;j;k;l

ð0:5kiaibjbk
_blGkl

ij

� 0:5ðliLkl
ij þ liDkl

ij þ likjGkl
ij ÞaiajbkblÞ, ð15Þ

where dot denotes the derivatives with respect to time and T�, W i, X ij, Y �ij, di, bi, a
k
ij , b

k
ij, P

kl
ij , G

kl
ij , etc., can be

got by calculating linear eigenvalues, which are given in the appendix.
Use the Lagrange function L, and variational functions, we can get the following set of two coupled

equations

bmðlmam �
_bmÞ ¼ IRm þ

X
i

IRi þ
X

i;j

IRi;j þ
X
i;j;k

IRi;j;k, (16)

bmð _am � bmÞ ¼ qRm þ
X

i

qRi þ
X

i;j

qRi;j þ
X
i;j;k

qRi;j;k, (17)

where IRm; . . . ;qRi;j;k are summations of corresponding terms (which is not given here). These equations
show the free surface kinematic and the dynamic boundary condition.

4. Solve equations of the nonlinear sloshing

The method of multiple scales is used to solve Eqs. (16) and (17). Here independent variables Tn are
introduced such as follows

Tn ¼ ent for n ¼ 0; 1; 2; . . . ,

where e is a measure of the amplitude of motion, which is small but finite. It is assumed that the solution of the
coupled equations can be represented by expansions in such form

akðtÞ ¼ eak1ðT0;T1;T2 . . .Þ þ e2ak2ðT0;T1;T2 . . .Þ þ e3ak3ðT0;T1;T2 . . .Þ þ � � � , (18)
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bkðtÞ ¼ ebk1ðT0;T1;T2 . . .Þ þ e2bk2ðT0;T1;T2 . . .Þ þ e3bk3ðT0;T1;T2 . . .Þ þ � � � . (19)

Substituting Eqs. (18), (19) into Eqs. (16), (17) and equating the coefficients e, e2,e3 to zero (detailed solution
can be found by Eqs. (17)–(30) in paper [6]). First, the general solutions of the order e, e2 can be written as

am1ðT0;T1;T2 . . .Þ ¼ Ame
iomT0 þ cc, (20)

bm1ðT0;T1;T2 . . .Þ ¼ �ioAme
iomT0 þ cc, (21)

am2 ¼
X

i;j

½Em
1;ijAiAje

iðoiþoj ÞT0 þ Em
2;ijAiAje

iðoi�oj ÞT0

þ iEm
3;ijAiAje

iðoiþoj ÞT0 þ iEm
4;ijAiAje

iðoi�oj ÞT0 � þ cc, ð22Þ

bm2 ¼
X

i;j

½Fm
1;ijAiAje

iðoiþoj ÞT0 þ Fm
2;ijAiAje

iðoi�oj ÞT0

þ iFm
3;ijAiAje

iðoiþoj ÞT0 þ iF m
4;ijAiAje

iðoi�oj ÞT0 � þ cc, ð23Þ

where om is the mth eigencircular frequency, Am is the complex amplitude, cc stands for the complex conjugate
of the preceding terms, i is the imaginary unit unless used as a suffix, Em

1;ij , Em
2;ij , Em

3;ij, Em
4;ij , Fm

1;ij, Fm
2;ij , F m

3;ij , Fm
4;ij

are all real.
Finally, substituting am1, am2, bm1, bm2 into equations of the e3, and eliminating the term bm3 yields

bmðD
2
0am3 þ lmam3Þ ¼ �D0Qm � i2omD2Ame

iomT0

þ
X
i;j;p;q

W1ðm; i; j; p; qÞAiApAqe
iðoiþopþoqÞT0

þ
X
i;j;s;t

W5ðm; i; j; s; tÞAjAsAte
iðojþosþotÞT0

þ
X
i;j;k

_1ðm; i; j; kÞAiAjAke
iðoiþojþokÞT0

þ
X
i;j;p;q

½W2ðm; i; j; p; qÞAiApAqe
ið�oiþopþoqÞT0

þ W3ðm; i; j; p; qÞAiApAqe
iðoiþop�oqÞT0

þ W4ðm; i; j; p; qÞAiApAqe
iðoi�opþoqÞT0 �

þ
X
i;j;s;t

½W6ðm; i; j; s; tÞAjAsAte
iðoj�osþotÞT0

þ W7ðm; i; j; s; tÞAjAsAte
ið�ojþosþotÞT0

þ W8ðm; i; j; s; tÞAjAsAte
iðojþos�otÞT0 �

þ i
X
i;j;p;q

1ðm; i; j; p; qÞAiApAqe
iðoiþopþoqÞT0

þ i
X
i;j;s;t

5ðm; i; j; s; tÞAjAsAte
iðojþosþotÞT0

þ i
X
i;j;p;q

½ 2ðm; i; j; p; qÞAiApAqe
ið�oiþopþoqÞT0

þ 3ðm; i; j; p; qÞAiApAqe
iðoiþop�oqÞT0

þ 4ðm; i; j; p; qÞAiApAqe
iðoi�opþoqÞT0 �
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þ i
X
i;j;s;t

½ 6ðm; i; j; s; tÞAjAsAte
iðoj�osþotÞT0

þ 7ðm; i; j; s; tÞAjAsAte
ið�ojþosþotÞT0

þ 8ðm; i; j; s; tÞAjAsAte
iðojþos�otÞT0 �

þ
X
i;j;k

½_2ðm; i; j; kÞAiAjAke
ið�oiþojþokÞT0

þ _3ðm; i; j; kÞAiAjAke
iðoiþoj�okÞT0

þ _4ðm; i; j; kÞAiAjAke
iðoi�ojþokÞT0 � þ cc, ð24Þ

where Dm ¼ q=qTm. Each parameter is expressed as their respective coefficient in Eq. (24), we do not give
them here. In the subsequent analysis when a circle cylindrical tanks undergo pitch excitation, the liquid
surface will swell into a large amplitude breaking waves in the neighborhood of the resonant frequencies.

Here, taking the example of cylindrical tank under transverse excitation, whose frequency is close to the
first-order inherent frequency of the liquid in the tank, nonlinear sloshing of liquid in cylindrical tank are
discussed in three different conditions.

4.1. Planar motion

In the planar motion, f and Z can be expressed as

fnðr; y; zÞ ¼
JnðknmrÞ

JnðxnmÞ
�
cosh½ðknmðzþ hÞÞ�

knm sinh½knmh�
cosðnyÞ,

Znðr; y; 0Þ ¼
JnðknmrÞ

JnðxnmÞ
�
cosh½ðknmhÞ�

knm sinh½knmh�
cosðnyÞ,

where xnm ¼ knma, and wavenumber knm is the eigenvalue for mode ðn;mÞ, representing the solution of
J 0nðkaÞ ¼ 0.

When the tank is subjected to the pitch excitation at the circular frequency O in the neighborhood of om, Am

can be assumed as

jAmj � jAij for iam. (25)

Then Eq. (24) becomes

bmðD
2
0am3 þ lmam3Þ ¼ �D0Qm � i2ombm

qAm

qT2
eiomT0 þ CNA2

mAme
iomT0

þ CT A3
me

i3omT0 þ iDNA2
mAme

iomT0 þ iDT A3
me

i3omT0 þ cc, ð26Þ

where CN , CT , DN and DT are all real.
Since Am is not a function of T1, the difference between O and om turns out to be of order e2 resulting in

O ¼ om þ e2s. (27)

To obtain s, Qm and Am are to be expressed as

Qm ¼
1

2
qme

iOt þ cc; Am ¼
1

2
w � eg, (28)

where qm, w and g are all real. When the small parameter e takes the different measures, the useful range of
detuning s will change significantly. Substituting Eq. (28) into Eq. (26), equating the secular term to zeros,
separating real part and imaginary part, the following equations are obtained as

ombmw
qg
qT2
�

1

2
Oqm sinðsT2 � gÞ þ

1

8
CNw3 ¼ 0,

� ombm

qw
qT2
þ

1

2
Oqm cosðsT2 � gÞ þ

1

8
DNw3 ¼ 0.
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Transformed them to autonomy system by W ¼ sT2 � g

ombmw s�
qW
qT2

� �
þ

1

2
Oqm sin Wþ

1

8
CNw3 ¼ 0,

� ombm

qw
qT2
þ

1

2
Oqm cos Wþ

1

8
DNw3 ¼ 0. ð29Þ

For the stable motion qw=qT2 ¼ 0, qW=qT2 ¼ 0. Equating the phase angle W in Eq. (29), we can get the
frequency-response equation as

s ¼ �
CN

8ombm

w2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16q2

mo2
m �D2

Nw6
q

8bmomw
. (30)

Transforming Eq. (30), we can easily solve w by Kardan theory.
And then the stability can be discussed by the behavior of small perturbations by letting

w ¼ w0 þ wp ðjwpj5jw0jÞ, (31)

W ¼ W0 þ Wp ðjWpj5jW0jÞ, (32)

where ðw0; W0Þ are the singular point solutions and ðwp;WpÞ are small perturbations. Substituting Eqs. (31) and
(32) into Eq. (29), and retaining the linear term, Eq. (29) becomes

qwp

qT2
¼

3DNw20
8ombm

wp � w0 sþ
CN

8ombm

w20

� �
Wp, (33)

qWp

qT2
¼

DNw20
8ombm

Wp þ
1

w0
sþ

3CN

8ombm

w20

� �
wp. (34)

Then expressing the solution for these equations as

wp ¼ wp0e
lT2 ; Wp ¼ Wp0e

lT2 . (35)

Substituting them into Eqs. (33) and (34) yields the characteristic equation for l and obtaining l.

l
2
�

DNw20
2ombm

lþ
3D2

Nw
4
0

64o2
mb

2
m

þ sþ
3CN

8ombm

w20

� �
sþ

CN

8ombm

w20

� �
¼ 0,

l1;2 ¼
DNw20
4ombm

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

Nw
4
0

16o2
mb

2
m

� 4 sþ
3CN

8ombm

w20

� �
sþ

CN

8ombm

w20

� �s
. (36)

The stable–unstable regions are given in the ðs; wÞ yield

sþ
3CN

8ombm

w20

� �
sþ

CN

8ombm

w20

� �
¼

D2
Nw

4
0

64o2
mb

2
m

. (37)

We can get the response up to the second order as

fðr; y; z; tÞ ¼ ðewÞ cosðOt� jÞcmðr; y; zÞ �
1

2
ðewÞ2 sin 2ðOt� jÞ

X
i

Ei
1;mmciðr; y; zÞ, (38)

Zðr; y; tÞ ¼ omðewÞ sinðOt� jÞcmðr; y; 0Þ þ
1

2
ðewÞ2

X
i

½Fi
1;mm cosðOt� jÞ þ F i

2;mm�ciðr; y; 0Þ, (39)

where �j is phase angle, which obtained by Eq. (29)

j ¼ arctan
CNw2 þ 8ombms

DNw2
. (40)
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It is phase-frequency relation of stable response. Formula (38) indicates that constant part of velocity
potential function is zero, and formula (39) indicates that there exists a constant part in the second order
similar wave height function, namely the zero shift of the stable response of the nonlinear liquid sloshing.

4.2. Constant amplitude rotary motion

Based on the experimental and numerical results, even though the circle cylindrical tank just undergoes
lateral excitation, when the frequency lays in appropriate range, rotary motion occurs. Here rotary motion can
be categorized into three types. Firstly, there is evidently out of surface sloshing phenomenon in the transition
process, which takes the form of rotating in random directions, either left or right. However, the phenomena
will disappear eventually after stepping into the stable state. Secondly, the phenomenon will not disappear in
the stable state, but presents a similar ‘beat’ phenomenon within and out of the surface. Thirdly, the surface
rotates in the same direction all the time, that is to say both in the transition and stable states, either clockwise
or anticlockwise but the amplitude of the sloshing within and out of the surface under a certain excitation is
constant. And here we will concentrate on the analysis of the third condition. As a result of the existence of the
90	 phase differences between the planar motion and rotary motion eigenmode, the rotary motion can be
expressed as

fnðr; y; zÞ ¼
JnðknmrÞ

JnðxnmÞ
�
cosh½ðknmðzþ hÞÞ�

knm sinh½knmh�
ðcosðnyÞ þ i sinðnyÞÞ.

Replacing the mode suffix m in Eq. (24) by 1c and 1s, and equating the secular terms to zero, the following
equations are obtained as:

� 2io1b1
qA1c

qT2
eio1T0 þ

1

2
q1cOe

iOt þ ðCNA1cA1cA1c þ Cs1A1sA1sA1c

þ Cs2A1sA1sA1cÞe
io1T0 þ iðDNA1cA1cA1c þDs1A1sA1sA1c

þDs2A1sA1cA1sÞe
io1T0 þ cc, ð41Þ

� 2io1b1
qA1s

qT2
eio1T0 þ ðCNA1sA1sA1s þ Cs1A1cA1cA1s þ Cs2A1cA1cA1sÞe

io1T0

þ iðDNA1sA1sA1s þDs1A1cA1cA1s þDs2A1cA1sA1cÞe
io1T0 þ cc, ð42Þ

where o1 and b1 represent o1c, o1s and b1c, b1s respectively. Cs1, Cs2, Ds1 and Ds2 are all real.
These two equations (41) and (42) express the motions that have 90	 phase difference. Theoretically, the

four unknown variables can be determined by aggregating the above equations, but actually it is quite difficult
in solving them. According to the experiment results and numerical analysis, despite in the constant amplitude
rotary motion the sloshing amplitude within and out of the surface are not strictly equal, the difference is quite
small. Here two assumptions are made for the convenience of further analytical procedures.

First, in the constant amplitude rotary motion the two amplitudes within and out of surface are strictly
equivalent.

Secondly, in the constant amplitude rotary motion, there is a constant 90	 phase difference between the
sloshing motions within and out of surface.

The rotary motion is expressed as

A1c ¼
1

2
weij; A1s ¼ �

i

2
weij. (43)

Multiplying ‘i’ to each side of Eq. (42), adding it to Eq. (41), and then making similar processes to planar
motion through Eq. (43), therefore the nonlinear frequency and phase-response equation becomes

s ¼ �
CN þ Cs1 � Cs2

8ombm

w2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16q2

mo2
m � ðDN þDs1 �Ds2Þ

2w6
q

8bmomw
, (44)
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g ¼ arctan
ðCN þ Cs1 � Cs2Þw2 þ 8ombms

ðDN þDs1 �Ds2Þw2
. (45)

The stable–unstable regions are given in the ðs; wÞ yield

sþ
3ðCN þ Cs1 � Cs2Þ

8ombm

w20

� �
sþ

CN þ Cs1 � Cs2

8ombm

w20

� �
¼
ðDN þDs1 �Ds2Þ

2

64o2
mb

2
m

w40. (46)

Due to the difficulty to analyze the stable rotary motion with random directions, we will discuss the
situation separately.

4.3. Appearance of rotary motion in planar motion

When the phenomenon jump or rotary motion appears, the planar motion will become unstable. Since the
former phenomenon has been discussed before, we will concentrate on the latter one. Let

A1c ¼
1

2
w0e

ij; A1s ¼ �
i

2
wpe

ij. (47)

And then consider the condition of

jwpj 
 jw0j. (48)

Then the following result can be derived from Eqs. (41), (42)

� io1
qw0
qT2
þ

qwp

qT2
þ iðw0 þ wpÞ s�

qj
qT2

� �� �
�

1

2
iOq1e

ij

þ
1

8
w20½CNw0 þ ðCs1 � Cs2Þwp� �

i

8
w20½DNw0 þ ðDs1 �Ds2Þwp� ¼ 0. ð49Þ

Finally, undergo similar procession of amplitude and phase of in Eq. (49) as Eq. (31), and the
stable–unstable regions are given in the ðs; wÞ yield

sþ
CN

8ombm

w20

� �
sþ

Cs1 � Cs2

8ombm

w20

� �
¼

D2
Nw

4
0

64o2
mb

2
m

. (50)

Based on definition of wavenumber, eigenfrequency and coefficient of mode coupling, we find that CN , Cs1,
Cs2, DN , Ds1, Ds2 are all functions of the radius of the tank, the liquid height, the gravitational intension and
the sloshing damping. Hence, soft and hard spring characteristic and backbone curve will both vary over these
parameters.

4.4. Numerical results and discussion

A circular cylindrical tank subjected to the pitch excitation is taken as a numerical example, where
a ¼ 0:5m, h ¼ 0:5m, e ¼ 0:3m, y0 ¼ 0:1 rad.

The following conclusion can be made by the Fig. 2: corresponding to determinate liquid depth, the
amplitude-frequency response exhibits a ‘soft-spring’ character in the planar motion and a ‘hard-spring’ in the
rotary motion. A few cross-points of the left and right response curves of these two motions and
stable–unstable boundary curves exist in the figure, three of which, s1;s2;s3, represent significant physical
meanings that these three points are the boundary points of the physically realizable and unrealizable motions.
And from Fig. 3, we can conclude that the system’s amplitude-frequency response changes from a ‘soft-spring’
to a ‘hard-spring’ in the planar motion with the decreasing of the Bond number, while it changes from a ‘hard-
spring’ to a ‘soft-spring’ in the rotary motion (critical value 10:224� 0:001). There are two reasons causing
this change. One is derived from the gravity force and surface force’s continuous trading-off in the sloshing,
the other is derived from the liquid surface tension effect. Because of liquid viscous, liquid rises along tank
wall, then more liquid adheres to tank wall in the coactions of surface tension and contact angle hysteresis.
Liquid level rises, then sloshing mass falls, so sloshing character exhibits a significant change. Moreover,
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changing from a ‘soft-spring’ to a ‘hard-spring’ of the system’s amplitude-frequency response will make the
system presents different grade ‘jump’ and ‘lag’ phenomena.

Moreover, in the case of normal gravity condition, the response curves of planar motion and rotary motion
and the unstable region are both clear. However, as the Bond number goes down, the distance between these
curves will become smaller and smaller. That is to say, the difference between these motion types will become
similarly smaller. So a small change of the exterior conditions may lead to a huge change of the system
characteristic, even a mutation. This phenomenon can be represented by Fig. 3, in which as the exterior
excitation changes, a jump from rotary motion to planar motion exists (s ¼ s4 and s ¼ s5). This is the jump
phenomenon between different motion types. The stable region of the motion is illustrated in Fig. 4. And we
can find that the stable region and type will demonstrate differently when the gravity condition varies. When
Bond ¼ 10 the stable region is not given in Fig. 4, because as the soft and hard characteristic changes, the
original methods cannot be utilized to gain the stable region of the system, and other methods have to be used
to solve this problem in future.

5. Conclusions

Under pitch excitation, the sloshing of liquid in circular cylindrical tank includes planar motion, rotary
motion, rotary motion inside planar motion and other types. Planar motion may become unstable due to the
jump phenomenon, or convert to rotary motion through out-of-surface motion. Similar phenomenon exits in
the rotary motion. All these sloshing motions are connected to the radius of the tank, the liquid height, the
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Fig. 2. Global response curves of the liquid sloshing in normal gravity under pitching excitation [6] (see Table 1 for explanation of curves

and regions).

Table 1

Explanations for curves and regions in Figs. 2 and 3

Curve or region Explanation Equation

(1) Backbone curve of planar motion (30)

(2) Backbone curve of rotary motion (44)

(6), (7) Response curve of planar motion (30)

(8), (9) Response curve of rotary motion (44)

(3)–(1) Unstable region for planar motion (jump phenomenon) (37)

(1)–(4) Unstable region for planar motion (appearance of rotary motion) (50)

(2)–(5) Unstable region for rotary motion (jump phenomenon) (46)

(10)2(1)

(4)2(11)

)
Unstable region for rotary motion (decay) (50)
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gravitational intension, surface tension and the sloshing damping. Hence, the soft and hard spring
characteristic of backbone curve, grade bend, and stable–unstable region of these motions vary with the
change of the parameter. The influence of the gravity condition on the liquid stable dynamics behaviors can be
clearly illustrated by the response curves and all kinds of stable–unstable boundary in the s; wð Þ plane. The
result indicates that the system’s amplitude-frequency response changes from a ‘soft-spring’ to a ‘hard-spring’
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in the planar motion with the decreasing Bond number, while it changes from a ‘hard-spring’ to a ‘soft-spring’
in the rotary motion. Namely, the characteristic of the system will undergo a clear change in different gravity
conditions and motion types.

Appendix

li ¼ ki tanh kih; t ¼
Z

r cos y½f ðrÞ � C0�ds; W � ¼

Z
f ðrÞ � C0½ �

2 ds; bi ¼

Z
f2

i ds,

zi ¼

Z
fiz cos yds

����
r¼a

; Bi ¼

Z
fir cos yds

����
z¼e�h

; di ¼

Z
fiF0 ds; ti ¼

Z
r cos yfi ds,

ci ¼
qfi

qr
; wi ¼

1

r

qfi

qy
; W i ¼

Z
ci � z cos y½f ðrÞ � C0�ds,

V i ¼

Z
wi �

z sin y
r
½f ðrÞ � C0�ds; Ui ¼

Z
fi � r cos y½f ðrÞ � C0�ds,

Pi ¼

Z
fi½f ðrÞ � C0�ds; Qi ¼

Z
ci cos y½f ðrÞ � C0�

2 ds,

IQi ¼

Z
ci � z cos y½f ðrÞ � C0�

2 ds; Oi ¼

Z
wi � sin y½f ðrÞ � C0�

2 ds,

IOi ¼

Z
wi � z sin y½f ðrÞ � C0�

2 ds; IPi ¼

Z
fi � r cos y½f ðrÞ � C0�

2 ds,

X ij ¼

Z
fifj½f ðrÞ � C0�ds; Pij ¼

Z
cicj½f ðrÞ � C0�ds,

Oij ¼

Z
wiwj½f ðrÞ � C0�ds; IW ij ¼

Z
cifj � cos y½f ðrÞ � C0�ds,

IV ij ¼

Z
cifj � z cos y½f ðrÞ � C0�ds; IUij ¼

Z
wifj � z sin y½f ðrÞ � C0�ds,

IPij ¼

Z
wifj � sin y½f ðrÞ � C0�ds; IOij ¼

Z
fifj � r cos y½f ðrÞ � C0�ds,

IRij ¼

Z
cicj½f ðrÞ � C0�

2 ds; ISij ¼

Z
wiwj½f ðrÞ � C0�

2 ds,

E�ij ¼

Z
cifj � z cos y ds; F�ij ¼

Z
wifj � z sin yds; G�ij ¼

Z
fifj � r cos yds,

Y �ij ¼

Z
fifj½f ðrÞ � C0�

2 ds,

bk
ij ¼

Z
cicjfk ds; gk

ij ¼

Z
wiwjfk ds; ak

ij ¼

Z
fifjfk ds,

H�ijk ¼

Z
cifjfk � cos yds; I�ijk ¼

Z
cifjfk � z cos yds,

J�ijk ¼

Z
wifjfk � sin y ds; K�ijk ¼

Z
wifjfk � z sin yds,

L�ijk ¼

Z
fifjfk � r cos yds; ITijk ¼

Z
fifjfk½f ðrÞ � C0�ds,

Rijk ¼

Z
cicjfk½f ðrÞ � C0�ds; Sijk ¼

Z
wiwjfk½f ðrÞ � C0�ds,

Gkl
ij ¼

Z
fifjfkfl ds; Lkl

ij ¼

Z
cicjfkfl ds; Dkl

ij ¼

Z
wiwjfkfl ds; Pkl

ij ¼ k2
j G

kl
ij þ Lkl

ij þ Dkl
ij .
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